乾式キャスクを用いる使用済燃料中間貯蔵建物の基礎構造の設計に関する技術規程(JEAC4616-2009)正誤表

下記のとおり誤記がありましたので、ご訂正をお願いします。

頁	誤	正
33	$L = \frac{\tau_d}{\sigma_z'} = \gamma_n \cdot \frac{\alpha_{max}}{g} \cdot \frac{\alpha_z}{\sigma_z'} \cdot \gamma_d $ (Frif 6.1.2)	$L = \frac{\tau_{\rm d}}{\sigma_{\rm z}'} = \gamma_{\rm n} \cdot \frac{\alpha_{\rm max}}{g} \cdot \frac{\sigma_{\rm z}}{\sigma_{\rm z}'} \cdot \gamma_{\rm d} \dots $ (Frif 6.1.2)
130	K^{G}_{RR} : 回転方向群杭の杭頭地盤ばねにおける <mark>減衰定数(kN·m/rad)</mark>	$K_{ m RR}^{ m G}$:回転方向群杭の杭頭地盤ばねにおける <mark>ばね剛性(kN·m/rad)</mark>
131	$\mathcal{S} = \frac{2}{\underbrace{e^{\beta \cdot L} + e^{-\beta \cdot L}}_{C} + (e^{\beta \cdot L} - e^{-\beta \cdot L})}_{C} \cdots \cdots$	$\delta = \frac{2}{e^{\beta \cdot L} + e^{-\beta \cdot L} + \frac{e^{\beta \cdot L} - e^{-\beta \cdot L}}{C}} $ (\$\text{M} 2.6-14)